کاربرد شبکه عصبی مصنوعی در پیشبینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
نویسندگان
چکیده مقاله:
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیکی اشباع خاک با استفاده از دادههای اندازهگیری شده منحنی مشخصه رطوبتی خاک و جرم مخصوص ظاهری استفاده شده است. با استفاده از دادههای اندازهگیری شده جرم مخصوص ظاهری خاک، بعد فرکتالی منحنی مشخصة رطوبتی، مکش در نقطه ورود هوا، تخلخل مؤثر، مقادیر هدایت هیدرولیکی اشباع خاک با استفاده از شبکه عصبی مصنوعی تخمین زده شدند. در مرحله آموزش مدل از 114 داده اندازهگیری شده منحنی مشخصة رطوبتی و جرم مخصوص ظاهری خاک و در مرحله تست از 28 داده باقیمانده استفاده شد. مقادیر MSE و R2 در مرحله تست مدل شبکه عصبی مصنوعی با چهار پارامتر ورودی بهترتیب 0028/0 و 76/0 محاسبه شدند. مقایسه عملکرد مدل شبکه عصبی مصنوعی با دو مدل ارائه شده توسط رائولز و همکاران نشان داد که مدل شبکه عصبی مصنوعی با دقت بالاتری هدایت هیدرولیکی اشباع خاک را پیشبینی مینماید.
منابع مشابه
کاربرد شبکه عصبی مصنوعی در پیش بینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
متن کاملبرآورد هدایت هیدرولیکی اشباع خاک با استفاده از پارامترهای زودیافت خاک و شبکه عصبی مصنوعی
هدایت هیدرولیکی اشباع خاک، از مهمترین ویژگی های فیزیکی خاک است که اهمیتی ویژه در شناخت، بررسی و مدل سازی ترابری آب، املاح و آلاینده های محیط متخلخل زیرزمینی دارد. باوجود تحقیقات متعددی که پیرامون اندازه گیری مستقیم هدایت هیدرولیکی اشباع صورت گرفته است، این روش ها همچنان پرهزینه، زمان بر و تخصصی هستند. از این رو ضرورت برآورد هدایت هیدرولیکی اشباع با استفاده از روش های سریع، کم هزینه و با دقتی قا...
15 صفحه اولارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران
هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی میباشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازهگیری آزمایشگاهی و صحرایی آن دشوار، وقتگیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روشهای غیرمستقیم مانند توابع انتقالی میتوان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...
متن کاملمقایسه روشهای شبکه عصبی مصنوعی و رگرسیونی برای پیشبینی هدایت هیدرولیکی اشباع خاکهای استان خوزستان
Direct measurement of soil hydraulic characteristics is costly and time-consuming. Also, the method is partly unreliable due to soil heterogeneity and laboratory errors. Instead, soil hydraulic characteristics can be predicted using readily available data such as soil texture and bulk density using pedotransfer functions (PTFs). Artificial neural networks (ANNs) and statistical regression are t...
متن کاملارزیابی روش غیرپارامتریک k- نزدیکترین همسایه و سیستمهای شبکه عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع خاک
هدایت هیدرولیکی اشباع خاک از مهم ترین ویژگی های فیزیکی خاک است لیکن در بیشتر موارد به علت محدودیتهای عملی و یا هزینهای، اندازهگیری آن با دشواری همراه است. در این پژوهش مدلهای مختلف شبکه های عصبی مصنوعی با نوعی از الگوریتمهای غیرپارامتریک از نوع یادگیرندههای تنبل موسوم به k-نزدیکترین همسایه، برای تخمین هدایت هیدرولیکی اشباع خاک از روی دادههای سهلالوصول خاک، مورد مقایسه قرار گرفت. در این ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 97- 112
تاریخ انتشار 2009-05-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023